Developing a Collaborative BGP Routing Analyzing and Diagnosing Platform

Changqing An, Jilong Wang

Rennes, France

12 JUNE, 2024

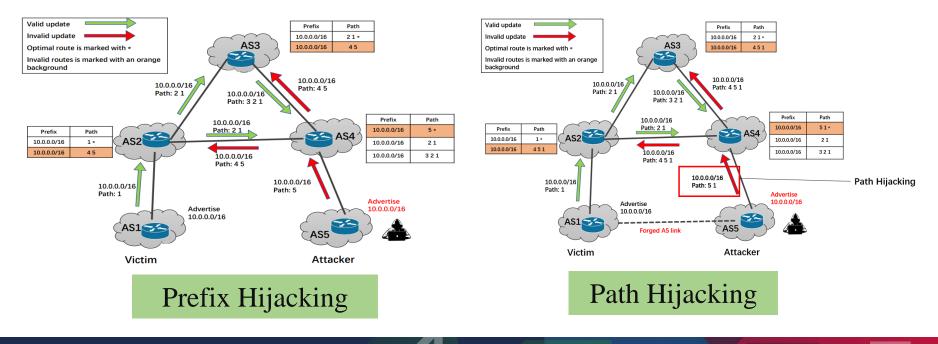
RENDEZVOUS À RENNES Rennes, France | 10-14 JUNE 2024

Outline

- Background
- BGP Hijacking Detection Algorithm
- Functionality of the BGPWatch Platform
- BGP Route Sharing and Looking Glass Platform
- Future Work

Collaborative Community

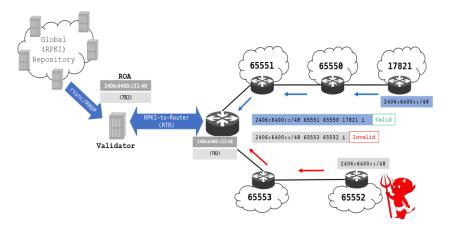
- Work of 19 organizations (listed alphabetically)


- AARNET (AU)
- APAN-JP (JP)
- BdREN (BD)
- CERNET (CN)
- DOST-ASTI (PREGINET, PH)
- ERNET (IN)
- Gottingen University (DE)
- HARNET (JUCC, HK)
- ITB (ID)
- KREONET (KR)

- LEARN (LK)
- MYREN (MY)
- NREN (NP)
- PERN (PK)
- REANNZ (NZ)
- SingAREN (SG)
- Surrey University (UK)
- ThaiREN (TH)
- TransPAC (US, APAN/GNA-G Routing WG)

BGP Hijacking

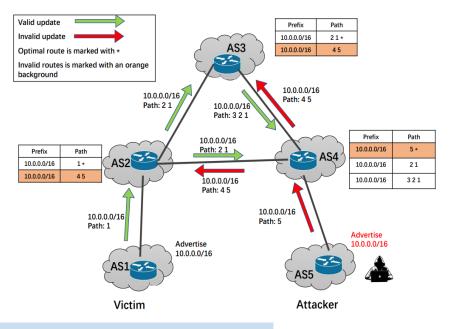
BGP hijacking often leads to catastrophic consequences



4

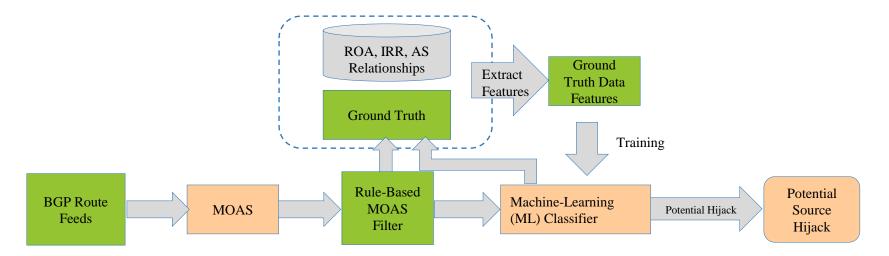
Solutions to BGP Hijacking

- Preventing the hijacking before it happens
 - RPKI (Resource Public Key Infrastructure)
 - ASPA(Autonomous System Provider Authorization)
- Monitoring to detect the hijacking
 - Route Views
 - RIPE RIS
 - BGPstream
 - GRIP
- Mitigating the hijacking
 - Announcing a more specific prefix
 - Contact other networks to filter routes



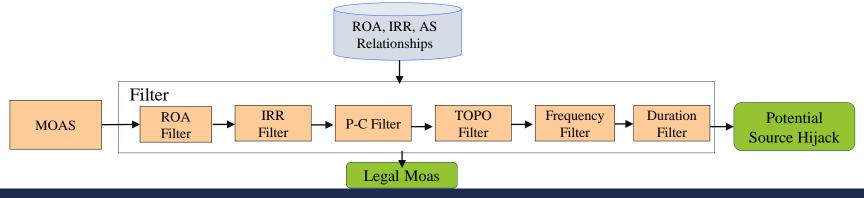
RPKI is very useful, but it's still in the process of deployment

MOAS and BGP Prefix Hijacking


- MOAS (Multiple Origin AS) : multiple ASes originate the same prefix
- MOAS is a critical characteristic of source hijacking
- MOAS is not solely caused by hijacking
 - Multihoming
 - ➤ Traffic Engineering
 - DDOS Mitigating
 - Anycast Address

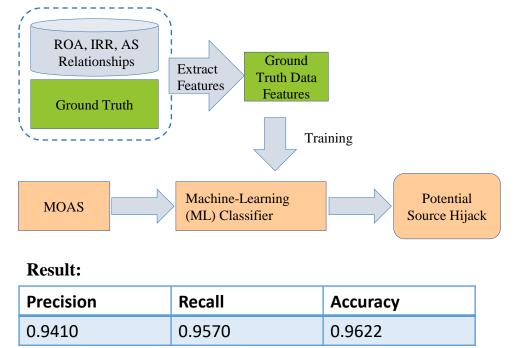
Determining the legitimacy of MOAS is a major challenge

A Rules and Machine Learning Combined Method

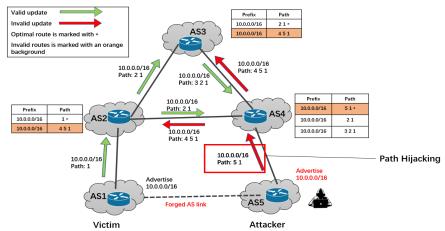


- Initially, train the machine learning classifier.
- During operation, the platform fetches BGP ROUTE feeds, extracts MOAS.
- Rule-based filters are used to sift through a large volume of legitimate MOAS.
- Then, the machine learning classifier is utilized to categorize the remaining MOAS.

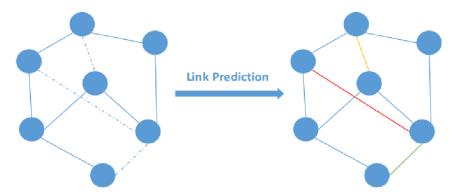
Rule based Filtering


- ROA Filter: Sync with public repository using Routinator, every minute
- IRR Filter: use Internet Routing Registries to assist in filtering, sync every day
- Provider-Customer Filter: CAIDA as relationship database
- TOPO Filter: Hijacker and Victim in the same AS-PATH
- Admin Filter: Same administrator etc., sync with WHOIS every day
- Frequency/Duration Filter: Frequency/Duration longer than a threshold

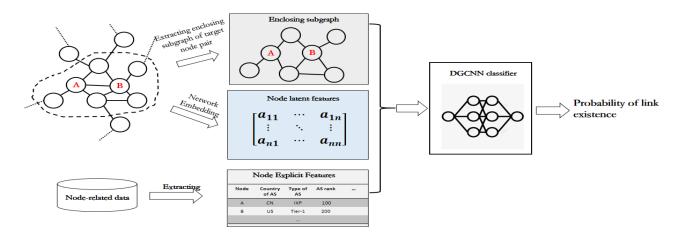
Machine Learning based Filtering


- Features
 - MOAS TYPE, AS Rank Difference, Business Relationship, Geographical Relationship,
 - Announcement Activity, Hijacking Activity,
 - Edit Distance of AS name, org, desc,
 - AS type, Degree and Coreness of AS,
 - Prefix type
- Classifier
 - Extreme Randomized Trees

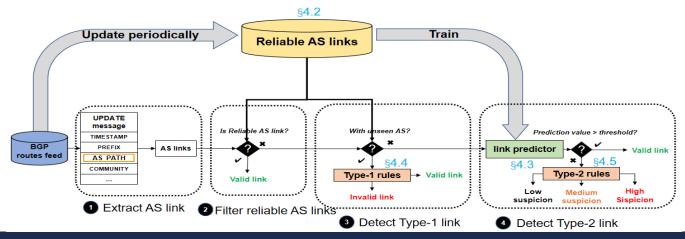
Path Hijacking Detection


- Path hijacking can evade MOAS, but usually cause unseen AS link
- State of the art detection technique
 - Treat all unseen links appearing in the control plane as suspicious event
 - Then validate the event through the data-plane probing
- Limitation
 - Unseen links are very common
 - Intense data-plane workload
 - Inefficient and difficult to guarantee real-time

Detecting Fake AS-PATHs based on Link Prediction

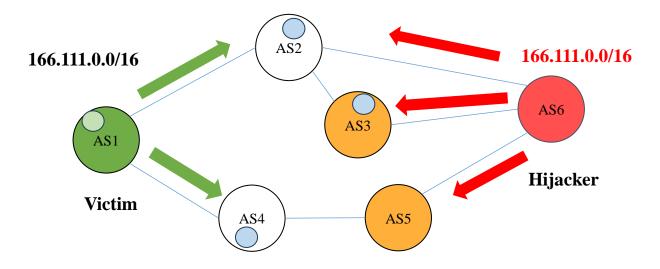

- Evaluate the authenticity of unseen links with link prediction and filter the benign unseen links
- Link prediction: a technique for inferring whether a link is likely to exist between two nodes from an existing observable portion of the network
- Is AS link predictable? Graph characteristics of AS-level topology
 - Power-law distribution
 - Negative degree-degree correlation
 - Hierarchical structure
 - AS links usually connect two ASes with the same properties.

Unseen Link Prediction


- Select Deep Graph Convolutional Neural Network (DGCNN) as the link prediction algorithm
- CAIDA AS relationship & AS location, type and rank
- Training with positive and negative samples
- The accuracy reached 0.95 and the AUC reached 0.98

Framework: Combining Link Prediction and Rules

- Link prediction is used to find suspicious unseen links, and rules are used to improve the confidence level
- The accuracy of positive AS-PATHs is about 99.5%
- The accuracy of Type-1 path hijacking is 87.5%



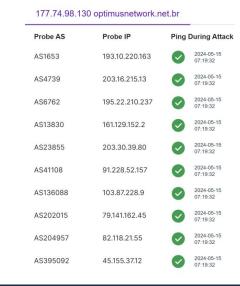
Rules

- If any rules are successfully matched, the suspicious score is increased by 1.
 - The number of unique ASes in AS-PATH is greater than the pre-set threshold.
 - The suspicious link with a single-digit ASN at the end of the AS-PATH.
 - The editing distance between two ASN digits of a suspect link is not more than 1.
 - The AS-PATH has AS loop, and the link is in the loop.
 - The AS-PATH violates the valley-free rule.
 - The AS-PATH causes traffic detour.
- When a path score reaches a threshold, it is judged as hijacking.

Further Data Plane Probing

Looking Glass vantage point

Representative services


- Possible Hijacking?
 - 1. Multi Home, Proxy
 - 2. Prefix Migration
 - 3. Hijacking
- When a hijacking occurs, it will affect the service reachability
- Approach: Test representative service from Looking Glass VPs

Further Data Plane Probing

- 1. Select anchor server for the prefix/subprefix from TOP 1M domain name.
- 2. Select looking glass vantage point from affected ASes and unaffected ASes.
- 3. Check reachability during attack and after attack. Ping? Tracert?
- 4. Evaluate the possibility of Hijacking.

45.174.10.11 gt	ecfibra.com.br				
Probe AS	Probe IP	Ping	During Attack	Ping /	After Attack
AS7489	210.16.120.5	×	2024-05-15 04:09:38	⊘	2024-05-15 04:14:21
AS29182	37.46.131.230	×	2024-05-15 04:09:38	Ø	2024-05-15 04:14:20
AS35297	91.204.213.202	×	2024-05-15 04:09:38	Ø	2024-05-15 04:14:20
AS36352	192.227.239.227	×	2024-05-15 04:09:38	⊘	2024-05-15 04:14:20
AS44066	212.224.76.52	×	2024-05-15 04:09:38	⊘	2024-05-15 04:14:20
AS53080	187.95.0.32	\checkmark	2024-05-15 04:09:38	Ø	2024-05-15 04:14:22
AS197071	91.217.251.2	×	2024-05-15 04:09:38	⊘	2024-05-15 04:14:20
AS200651	185.165.171.51	×	2024-05-15 04:09:38	⊘	2024-05-15 04:14:20
AS211211	193.42.112.3	×	2024-05-15 04:09:38	Ø	2024-05-15 04:14:20
AS267554	201.182.166.26	~	2024-05-15 04:09:38	Ø	2024-05-15 04:14:21

Example of a Hijacking Event

45.174.10.0/23-HIJACK1715746169 Possible Hijack Events

Victim AS:	268938
------------	--------

Hijacker AS: 268342

Victim Economy: BR (Brazil)

Hijacker Economy: BR (Brazil)

Victim AS Name: no data

Hijacker AS Name: no data

Start Time (UTC): 2024-05-15 04:09:29 End Time (UTC): 2024-05-15 04:14:15

During Time: 0:4:46

45.174.10.11 gtecfibra.com.br

Probe AS	Probe IP	Ping [Ouring Attack	Ping A	fter Attack
AS7489	210.16.120.5	×	2024-05-15 04:09:38		2024-05-15 04:14:21
AS29182	37.46.131.230	×	2024-05-15 04:09:38		2024-05-15 04:14:20
AS35297	91.204.213.202	×	2024-05-15 04:09:38		2024-05-15 04:14:20
AS36352	192.227.239.227	×	2024-05-15 04:09:38		2024-05-15 04:14:20
AS44066	212.224.76.52	\bigotimes	2024-05-15 04:09:38		2024-05-15 04:14:20
AS53080	187.95.0.32		2024-05-15 04:09:38		2024-05-15 04:14:22
AS197071	91.217.251.2	×	2024-05-15 04:09:38		2024-05-15 04:14:20
AS200651	185.165.171.51	×	2024-05-15 04:09:38		2024-05-15 04:14:20
AS211211	193.42.112.3	$\boldsymbol{\times}$	2024-05-15 04:09:38		2024-05-15 04:14:20
AS267554	201.182.166.26		2024-05-15 04:09:38		2024-05-15 04:14:21

Example of a Non-hijacking Event

177.74.97.0/24-SUB-HIJACK1715757340 Ongoing Possible SubHijack Events

Victim AS: 270977	Hijacker /	AS: <u>265467</u>		Start Time (UTC): 2024-05-15 07:15:40
Victim Economy: BR (Brazil)	Hijacker I	Economy: BR (Brazi	1)	End Time (UTC): no data
Victim AS Name: no data	Hijacker /	AS Name:no data		During Time: no data
	177.74.98.130 c	optimusnetwork.ne	et.br	
	Probe AS	Probe IP	Ping I	- During Attack
	AS1653	193.10.220.163	\bigcirc	2024-05-15 07:19:32
	AS4739	203.16.215.13	\bigcirc	2024-05-15 07:19:32
	AS6762	195.22.210.237		2024-05-15 07:19:32
	AS13830	161.129.152.2		2024-05-15 07:19:32
	AS23855	203.30.39.80	\bigcirc	2024-05-15 07:19:32
	AS41108	91.228.52.157		2024-05-15 07:19:32
	AS136088	103.87.228.9		2024-05-15 07:19:32

79.141.162.45

82.118.21.55

45.155.37.12

AS202015

AS204957

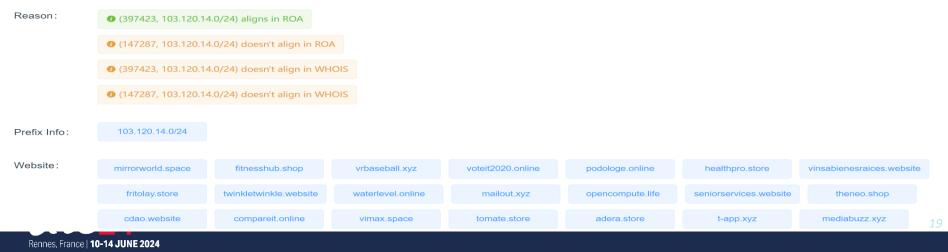
AS395092

2024-05-15

07:19:32 2024-05-15

07:19:32 2024-05-15

07:19:32



Evaluate Harm Level

• Whether the prefix and AS provide critical services?

103.120.14.0/24-hijack1708563695 Ongoing Possible Hijack Events

NighlevelHijacker AS: 147287Ongoing Possible Hijack EventsVictim Country: US (United States)Hijacker Country: IN (India)Victim AS Name: TIER-NETHijacker AS Name: DATAPARA1-AS-INStart Time: 2024-02-22 01:01:35End Time: no dataDuring Time: no dataTime Zone: UTC

Domains in Prefix and AS TYPE

- TOP 1M domain:
 - Tranco: <u>https://tranco-list.eu/</u>
 - Cloudflare: <u>https://radar.cloudflare.com/domains</u>
- Convert domain name to IP Prefix
- Get AS type from ASdb:
 - <u>https://asdb.stanford.edu/</u>
 - ASdb is a research dataset that maps ASN to organizations and industry types using data from business intelligence databases, website classifiers, and a machine learning algorithm.
 - Hosting and Cloud Provider

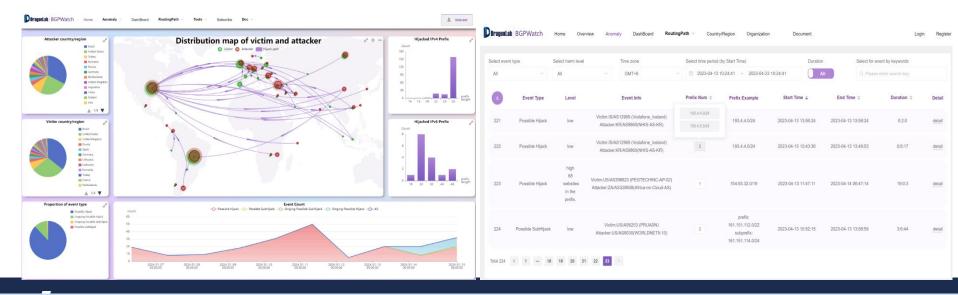
https://github.com/thudragonlab/source-hijacking-detection

https://github.com/thudragonlab/bgpwatch-frontend

https://github.com/thudragonlab/bgpwatch-backend

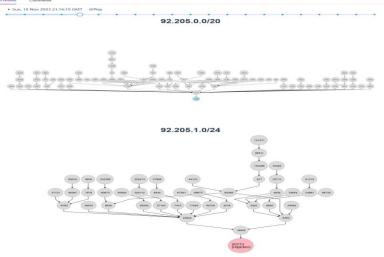
https://github.com/thudragonlab/bgp-analysis

hudragonlab / source-hijacking-detection		ights	
12 master 👻 12 Branch 🛇 0 Tags		Q. Go to file	↔ Code •
E thudragonlab Update README.md		8dbaf23 - 2 days ago	🕙 10 Commits
TSU-BGPMonitor-Consumer	init		2 weeks ago
TSU-BGPMonitor-Producer	fix		2 weeks ago
example	init		2 weeks ago
script	init		2 weeks ago
static	init		2 weeks ago
.gitignore	init		2 weeks ago
LICENSE	add license		2 weeks ago
README.md	Update README.md		2 days ago
README_CN.md	init		2 weeks ago


ode 💿 Issues 🏦 Pull reque	sts 💿 Actions 🖽	Projects ① Security 🗠 Insi	ghts	
1º master - 1º 1	Branch 🛇 0 Tags		Q. Go to file	↔ Code
(1) thudragoniab	odate README.md		ed2097d - 2 days ago	③ 3 Commits
public		init		2 weeks ago
src src		init		2 weeks ago
🖿 tests		init		2 weeks ago
.browserslistrc		init		2 weeks ago
.env.production		init		2 weeks ago
.gitignore		init		2 weeks ago
.gitlab-ci.yml		init		2 weeks ago
LICENSE		init		2 weeks ago
Makefile		init		2 weeks ago
README.md		Update README.md		2 days ago
README_CN.md		update readme		last week
🗋 babel.config.js		init		2 weeks ago
jest.config.js		init		2 weeks ago

BGPWatch: Prefix Hijacking Detection Platform

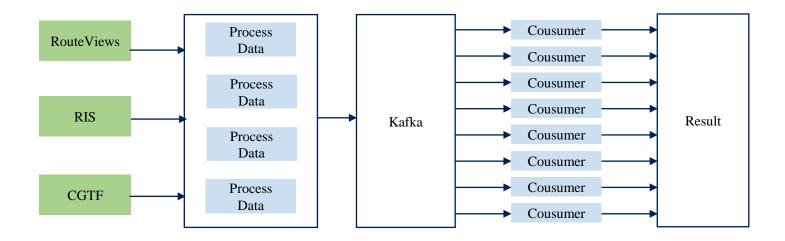
- Knowledge-based real-time BGP hijacking Detection System
- Public BGP event reporting service


- Based on MOAS/subMOAS
- Rely on Domain Knowledge (ROA, IRR, AS relationship, routing path, accumulated information, etc.)

https://bgpwatch.cgtf.net

Quick Response, Event replay, Comments

- Use RIS LIVE data
- Notify users immediately when an event is detected, minimizing damage from hijackings
- Event replay can help users understand the procedure, and analyze the extent of the impact of the event
- Comments from users can help improve the platform



	Add Comme	nt	
Accept/Reject	 Accept 	O Reject	
Description	I'm owner of this AS, I confirm	m that	
		le de la companya de	
		Cancel	OK

Parallel Computing and Clusters to Handle Big Routing Data

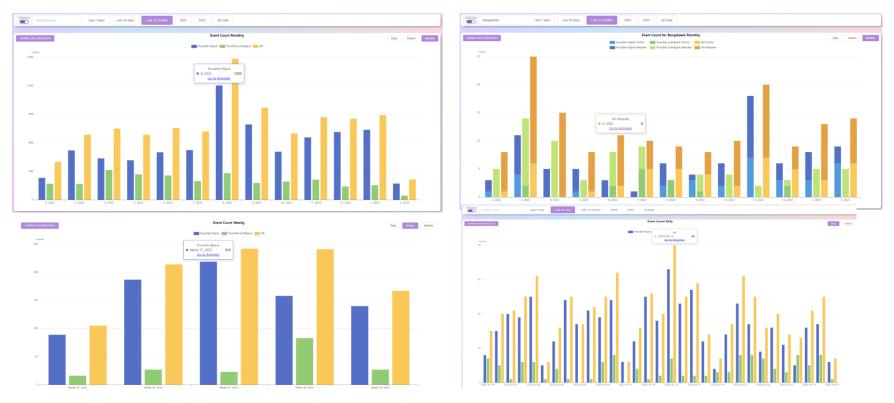
- There is a huge amount of routing data from RouteViews, RIS, CGTF.
- We improved the system by Parallel Computing and Clusters.

Subscribe Hijacking Events for AS and Send Alarm

Prefix C	Change	Hijack	AS P	eer Change	AS Path Change							
Select ev	ent type		Select ha	arm level	Time zone	Select time period (by Start Time)		Duration	Selec	t for event by I	(eywords
All		\sim	All	54	GMT+8 ~	2023-11-10 1	0:22:41 - 2023	-11-20 10:22:41	All	Q 9	945	
*	Event Typ	pe	Level		Event Info	Prefix Num ≑	Prefix Example	Start Time ≑	End Time 💠	Duration \$	Detail	Comment
1	Possible Hij	jack	low		m:TW/AS945(8964) /AS200827(VV-NETWORK)	1	23.150.11.0/24	2023-11-19 11:01:13	2023-11-19 11:15:16	0:14:3	detail	 No.
2	Possible Hij	jack	low		m:TW/AS945(8964) /AS200827(VV-NETWORK)	1	23.150.11.0/24	2023-11-19 09:00:47	2023-11-19 09:15:20	0:14:33	detail	00
3	Possible Hij	jack	low		m:TW/AS945(8964) /AS200827(VV-NETWORK)	1	23.150.11.0/24	2023-11-18 19:00:46	2023-11-18 19:15:19	0:14:33	detail	
		Hi,										

Hope this message finds you well. Greetings from the Institute for Network Sciences and Cyberspace at Tsinghua University. We have developed a BGP hijacking detection system (BGPWatch, https://bgpwatch.cgtf.net).

Our system shows that prefix 23.150.11.0/24 is normally announced by your 945; however, at 2023-11-18 11:00:46 (UTC), prefix 23.150.11.0/24 is also announced by 200827 Detailed information is available here.

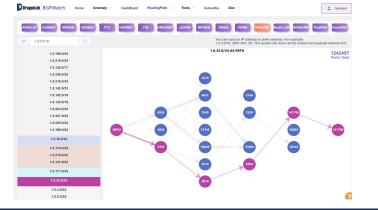

We would like to confirm with you whether this is a hijacking event or a false alarm of the system. Please click here to provide us with your feedback. Your time and response are greatly appreciated and will be very helpful for our research.

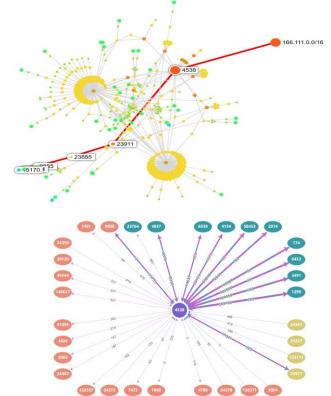
Have a good day!

Best regards, Institute for Network Sciences and Cyberspace Tsinghua University

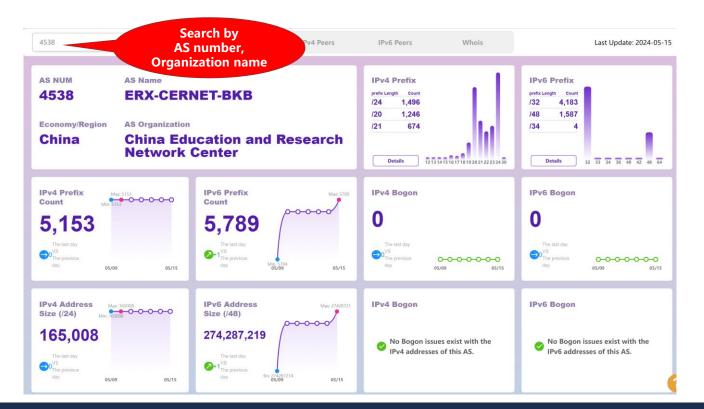
Overview--Statistics for Anomaly Events

Do statistics by economy, AS, and by yearly, monthly, weekly, and daily


Compare with other Platforms


	BGPWatch	GRIP	BGPStream
Delay	2 mins delay	5 mins delay	More than 2 hours
Event replay	V	×	\checkmark
Event statistical analysis	V	×	×
Event level evaluation	V	×	×
Benign MOAS report	V	V	×
Email Alarm	V	×	×
Accuracy	High	Medium to High	Low

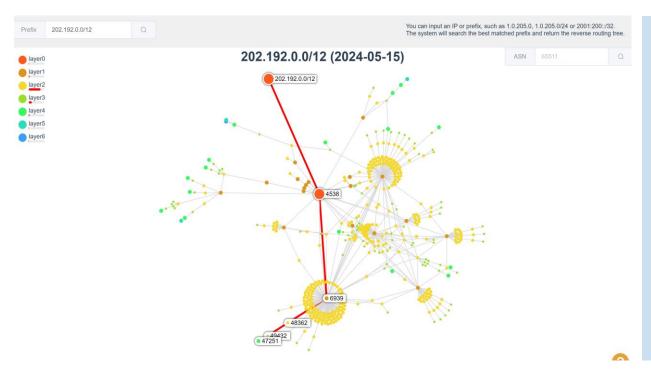
Tools for Network Operator


- Dashboard: AS info, prefix, peers
- Routing Search:
 - Aggregated forward routing path
 - Reverse routing path
 - Bi-direction routing path
- Subscribing, Alarming

https://bgpwatch.cgtf.net

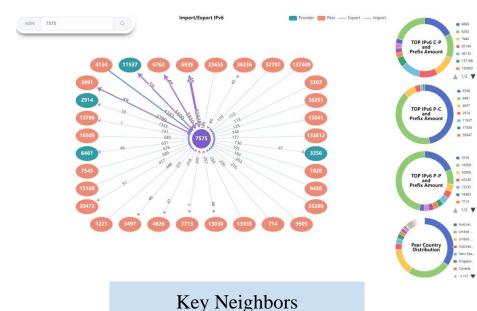
Dashboard

Prefixes Originated from the AS



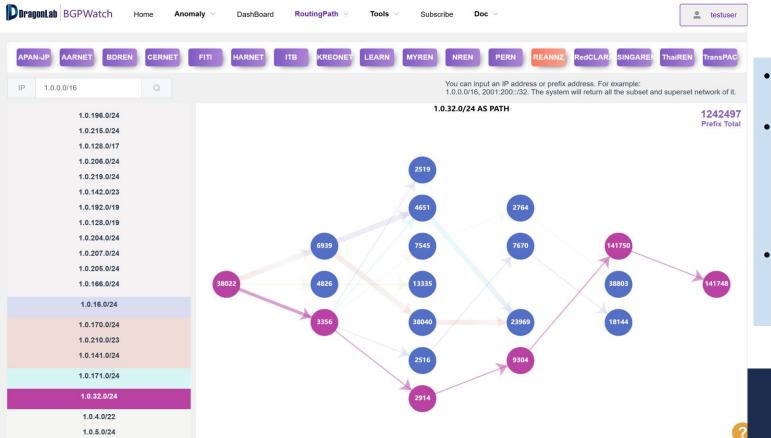
< 1 2 3 4 5 6 ··· 50 >

Total 1496


Reverse Routing Path

- Support Prefix / IP, IPv4 / IPv6
- The system will search the best matched prefix and return the reverse routing tree
- With better interactivity
- Click an AS or input AS number, the system will highlight the path to the AS
- The number of layers to display can be selected

Dashboard: IPv4/IPv6 Key Peers and All Neighbors Information



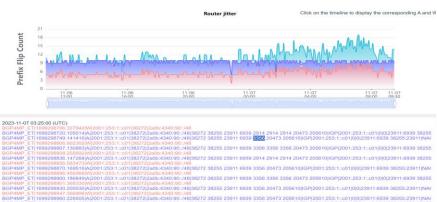
Provider	Peer	Search for ASN, Organization name or country									
	All IPv6 Neighbors										
		AS neighbors $\ensuremath{\hat{\varphi}}$	Organization	Country/Region \equiv	AS customer cone $\mbox{$\ddagger$}$	Relationship	Export	Import			
	1	<u>24</u>	National Aeronautics and Space Administration	United States	2	peer	0	2			
	2	<u>42</u>	WoodyNet, Inc.	United States	11	peer	0	80			
	3	<u>101</u>	University of Washington	United States	42	peer	0	13			
	4	<u>112</u>	DNS-OARC	United States	1	peer	0	2			
	5	<u>293</u>	ESnet	United States	40	peer	62	40			
	6	703	Verizon Business	United States	98	peer	0	48			
	7	<u>714</u>	Apple Inc.	United States	2	peer	0	269			
	8	<u>852</u>	TELUS Communications Inc.	Canada	247	peer	59	33			
	9	1103	SURF B.V.	Netherlands	24	peer	63	13			
	10	1221	Telstra Corporation Limited	Australia	1748	peer	31	713			
			Total	458 < 1 2 3	4 5 6 46	>					

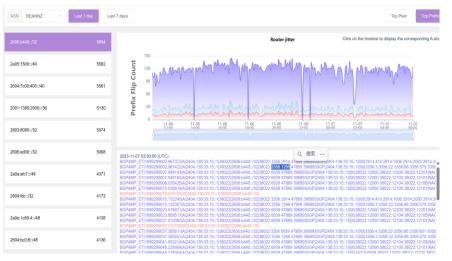
Multiple Routing Path Search


- Support Prefix / IP, IPv4 / IPv6
- Return paths of all sub networks and super
 - networks of the input prefix
- Group prefixes with the same routing path

Bi-Routing Path

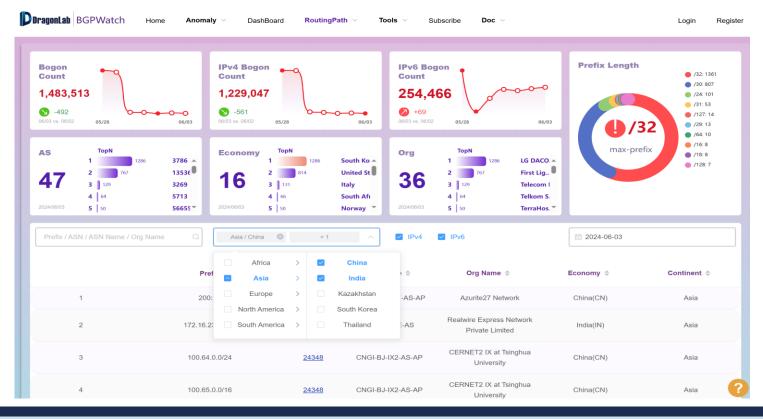
Support Prefix / IP, IPv4 / IPv6 Search the best matched prefix


Path Change

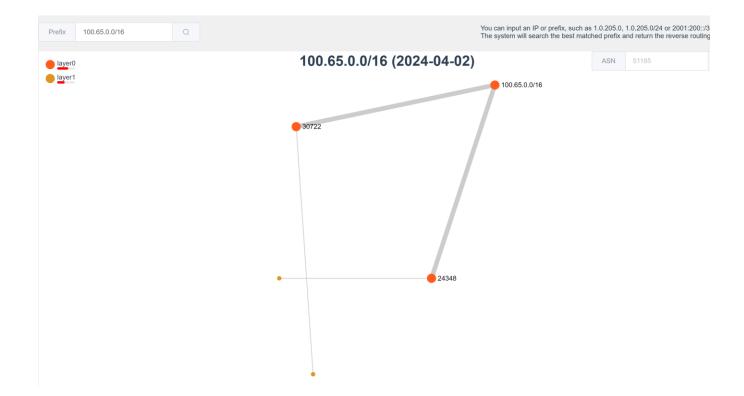


Router Jitter

- The advertisement and withdraw messages are received frequently.
- If this will harm internet performance?
- We may conduct some data plane testing in the future.



BGP4MP_E11099209002.20000jA2001.2031.tcc1108272[200:4300:00:00,040j0272 36255 23911 0039 3505 20173 200610](04201.2231.tcc11000](23911.0039 362652.2911](Ma BGP4MP_E11099209092.363198](W]2001:2531:tcc1138272[200:4340(90:448



Bogon IP Address Detection


Support searching by continent, economy, AS

Propagation of the Bogon IP Address

OPEN API

CGTF RIS

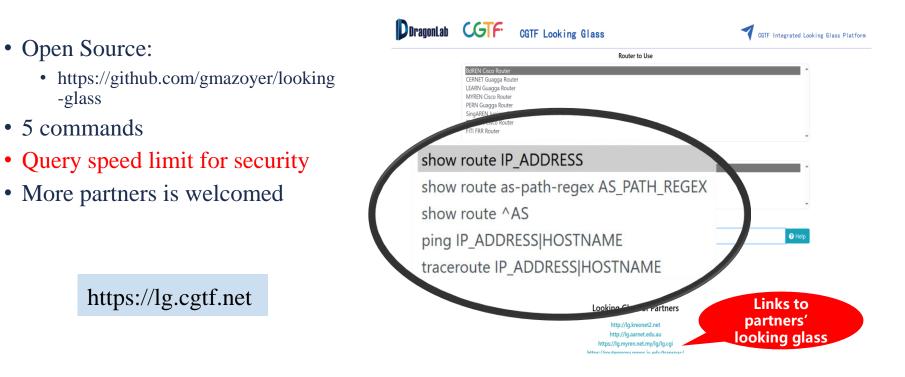
We have established BGP session with 16 partners. Configuration manual can be accessed at <u>https://www.bgper.net/index.php/document/</u>

No.	Partner	No.	Partner
1	APAN-JP	9	MYREN
2	AARNET	10	PERN
3	BDREN	11	REANNZ
4	CERNET	12	SINGAREN
5	HARNET	13	ThaiSARN
6	ITB	14	TransPAC
7	KREONET	15	NREN
8	LEARN	16	RedCLARA

https://bgp.cgtf.net

Index of /ribs/2022/07

Name	Last modified	<u>Size</u>	Description
rib.20220730.0600.mrt.	<u>bz2</u> 2022–07–30	06:00	13M
rib.20220730.0800.mrt.	<u>bz2</u> 2022–07–30	08:00	13M
rib.20220730.1000.mrt.	<mark>oz2</mark> 2022–07–30	10:00	13M
rib.20220730.1200.mrt.	<mark>oz2</mark> 2022–07–30	12:00	13M
rib.20220730.1400.mrt.	<mark>oz2</mark> 2022–07–30	14:00	13M
rib.20220730.1600.mrt.	<mark>oz2</mark> 2022–07–30	16:00	13M
rib.20220730.1800.mrt.	<mark>oz2</mark> 2022–07–30	18:00	13M
rib.20220730.2000.mrt.	<u>bz2</u> 2022–07–30	20:00	13M
rib.20220730.2200.mrt.	<u>bz2</u> 2022–07–30	22:00	13M
rib.20220731.0000.mrt.	<mark>oz2</mark> 2022–07–31	00:00	13M
rib.20220731.0200.mrt.	<mark>oz2</mark> 2022–07–31	02:00	13M
rib.20220731.0400.mrt.	<mark>oz2</mark> 2022–07–31	04:00	13M
rib.20220731.0600.mrt.	<mark>oz2</mark> 2022–07–31	06:00	13M
rib.20220731.0800.mrt.	<mark>oz2</mark> 2022–07–31	08:00	13M
rib.20220731.1000.mrt.k	<u>2022</u> 2022–07–31	10:00	13M



CGTF RIS Collector

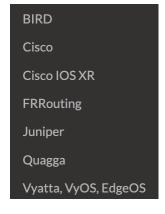
- Just have your border router establish an eBGP session with one of our collectors:
- Our Collector ASN: 65534
- Our Collector1 IPv4 address: 47.241.43.108
- Our Collector1 IPv6 address: 240b:4000:b:db00:8106:7413:738f:e9ed
- Our Collector2 IPv4 address: 203.91.121.227
- Our Collector2 IPv6 address: 2001:da8:217:1213::227

CGTF Looking Glass

- 7 Education & Research network joined
- Links to Integrated Looking Glass Platform

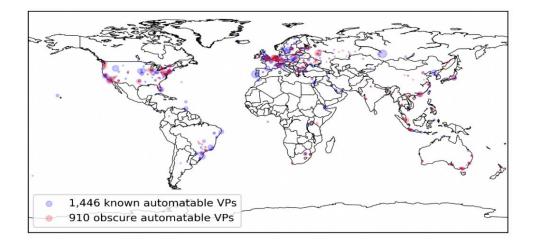
Configuration on Router Side

- Create a router account only for LG, and this account only has privileges of executing the above command.
- Use IP filtering mechanism. Add the web server IP to the whitelist.
- Juniper JUNOS:


Define the login class with permissions: set system login class lookinglass permissions network set system login class lookinglass permissions routing set system login class lookinglass permissions view

Define the login user:

set system login user lookinglass class lookinglass

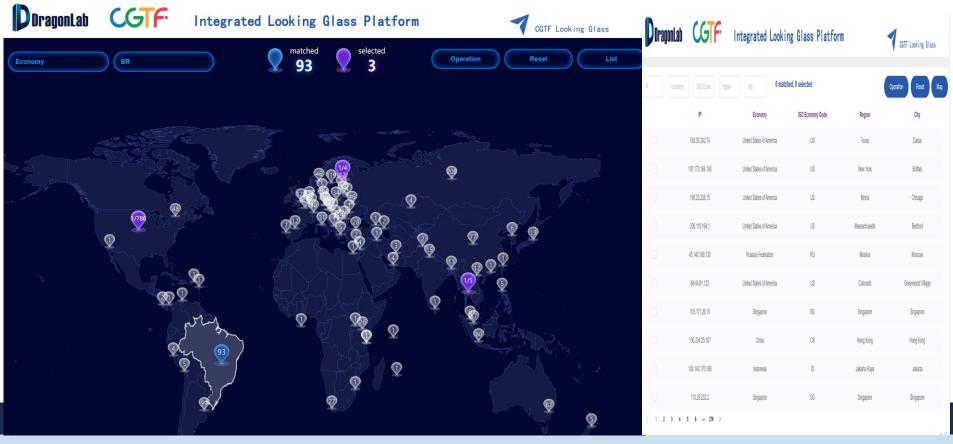

set system login user lookinglass authentication encrypted-password "encrypted-text" set system login user lookinglass authentication ssh-rsa "ssh-rsa rsa-pub-key-text"

https://www.bgper.net/index.php/document/ https://looking-glass.readthedocs.io/en/latest/

Open Looking Glass Vantage Point

• Paper: "Discovering obscure looking glass sites on the web to facilitate internet measurement research"——CoNEXT'21

1,446 known LG VPs in 386 cities of 75 countries910 obscure LG VPs in 282 cities in 55 countries


- ✓ The 910 obscure VPs cover 8 exclusive countries and 160 exclusive cities, where no known LG VPs have been found before
- ✓ The 8 countries are mainly distributed in
 East Africa and South Asia

Periscope has found several hundred VPs (364)

An Integrated Looking Glass Platform

https://gperf.cgtf.net/#/integrated

Security Concerns

- Where are the data stored?
 - BGP sharing platform: Cloud server in Singapore
 - BGPWatch: Cloud server in Hongkong
 - Looking Glass: Cloud server in Hongkong
- Will peering harm my network?
 - We use routing FRR[2] to simulate a real BGP router and it won't send routing anouncement.
- Will sharing routing information harm my network?
 - No, it's common and useful. Routeviews and RIPE RIS are two most famous RIS sharing platform.
- Our security policy doesn't permit ssh/telnet access from other network
 - Such as SingAREN, they use a VM to simulate a router, and peer with their real router. Then our looking glass access to the VM.

Future Work Plan

Objectives	Work Plan	Tentative Timeline
	Find obscure Looking Glass VP regularly	Dec. 2023 Done
Develop an integrated Looking Glass platform	Develop integrated Looking Glass platform	Feb. 2024 Done
	Develop Looking Glass API	Mar. 2024 Done
Use Looking Glass to further check routing	Develop data plan detection method and decision algorithm	June 2024 Ongoing
hijacking at the data plan	Integrate the algorithm to the system	Aug. 2024 Ongoing
Implement path hijacking detection and routing	Develop path hijacking detection method	Nov. 2024
leak detection methods	Develop routing leak detection method	Jan. 2025
Continue to maintain and fix bugs in the BGPWatch platform	Continually test and get suggestions from user	Throughout the entire project duration
Continue community development and engagement, and international collaboration	The second phase of the project (Dec.06, 2023 – June 06, 2025 (18 months)) Welcome new partners to join!	Throughout the entire project duration

Thank you Any questions?

Contact us at: sec@cgtf.net

