(APNIC ISIF Project)

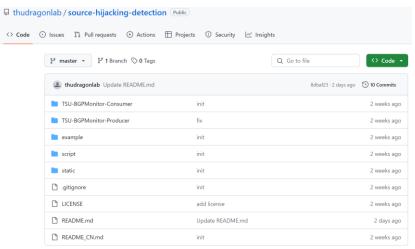
An Extension of the Ongoing Project "Developing a Collaborative BGP Routing Analyzing and Diagnosing Platform" Project

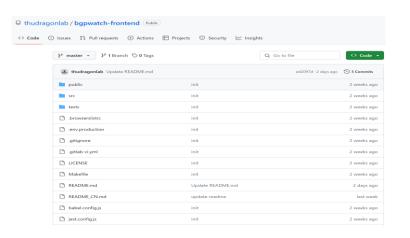
Technical Committee Report

Tsinghua University April 8, 2024

Outline

- Updates
- Demo of New Functions
- Future Work Plan
- Survey on Source Address Validation Deployment

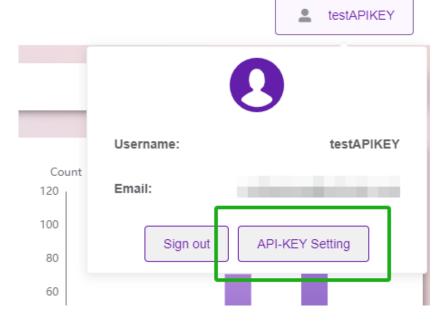

Open Source

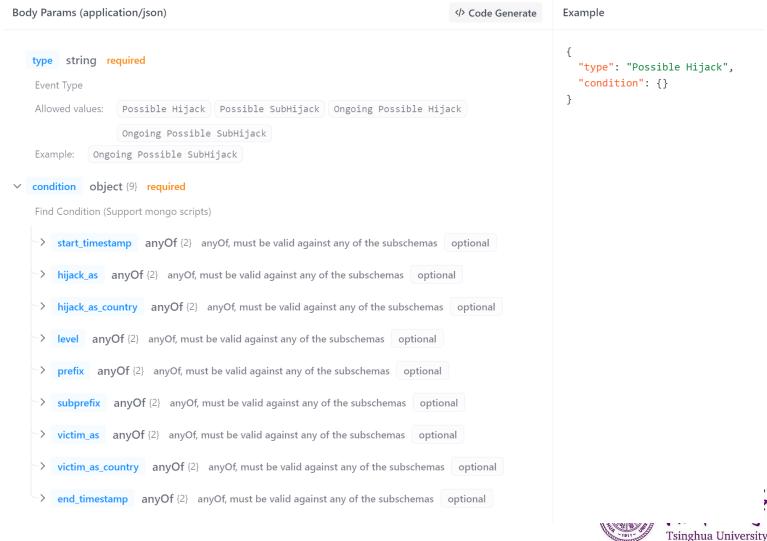

https://github.com/thudragonlab/source-hijacking-detection

https://github.com/thudragonlab/bgpwatch-frontend

https://github.com/thudragonlab/bgpwatch-backend

https://github.com/thudragonlab/bgp-analysis

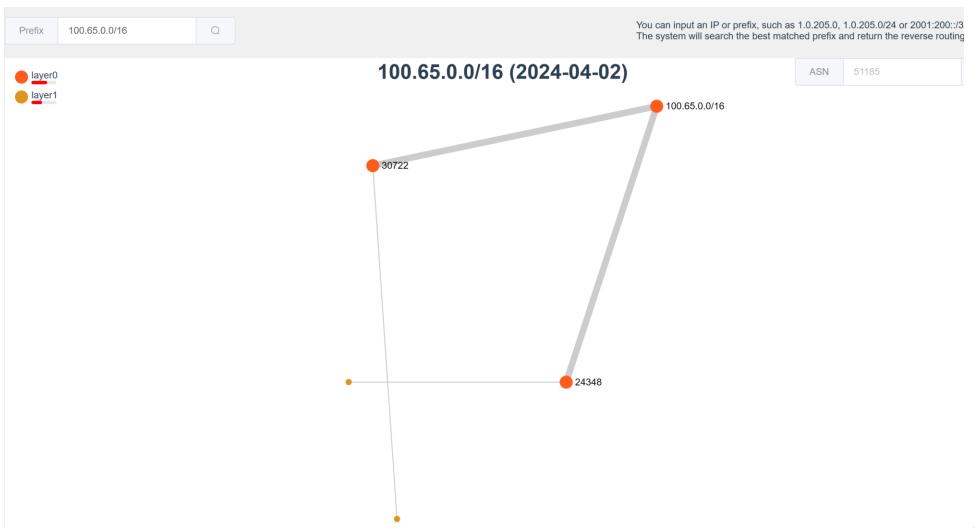




Open API

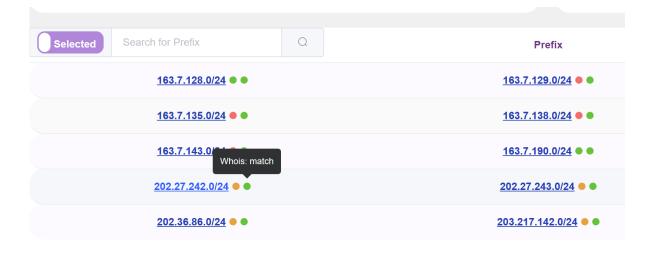
- /get_event_by_condition
- /get_event_detail

Bogon IP Address Detection


Support searching by continent, economy, AS

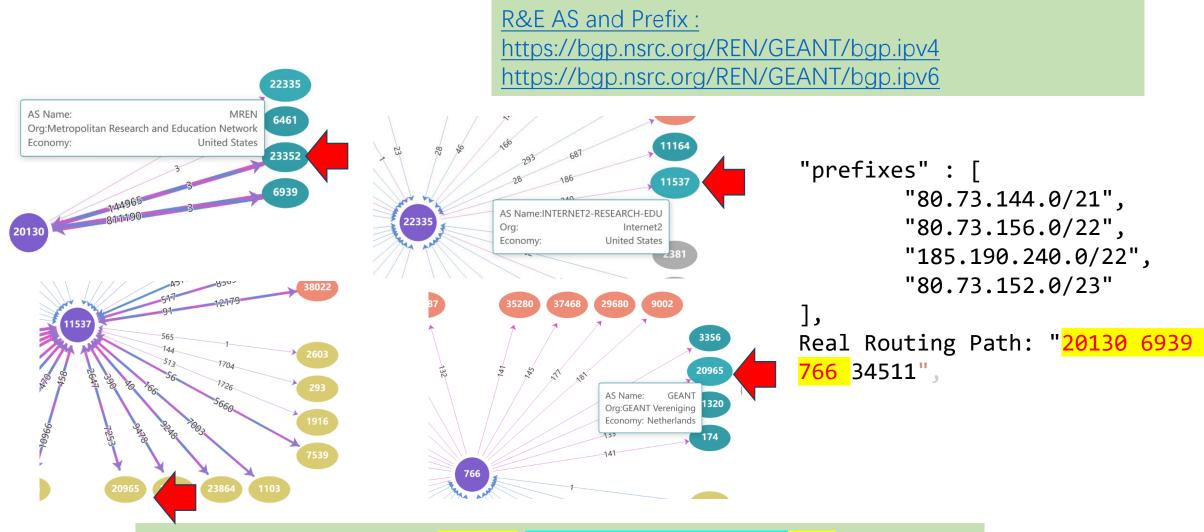
refix / ASN / ASN Name	e / Org Name					☑ IPv4 ☑ IPv6	2024-04-02
Asia / China	ssia / Hong Kong 🛭 Asia / Ir	ndia 🔕 Asia	/ Myanmar 🛭 Asia / South Ko	orea 🛭 Asia / Thailand 🔻			
Africa >		ASN \$	ASN Name 🌲	Org Name \$	Economy \$	Continent \$	Detail
Asia > Europe >	✓ India	<u>136168</u>	CAMPANA-AS-AP	Campana MYTHIC Co. Ltd.	Asia	<u>Detail</u>	
North America > South America >		60539	Huicast_Telecom	Huicast Telecom Limited	Hong Kong(HK)	Asia	<u>Detail</u>
	✓ Thailand	60539	Huicast_Telecom	Huicast Telecom Limited	Hong Kong(HK)	Asia	<u>Detail</u>
4	10.0.9.0/24	60539	Huicast_Telecom	Huicast Telecom Limited	Hong Kong(HK)	Asia	<u>Detail</u>
5	100.64.0.0/24	<u>24348</u>	CNGI-BJ-IX2-AS-AP	CERNET2 IX at Tsinghua University	China(CN)	Asia	<u>Detail</u>
6	100.65.0.0/16	<u>24348</u>	CNGI-BJ-IX2-AS-AP	CERNET2 IX at Tsinghua University	China(CN)	Asia	<u>Detail</u>
7	169.254.1.0/24	9730	BHARTITELESONIC-AS- IN-AP	Bharti Airtel Limited	India(IN)	Asia	<u>Detail</u>
8	fd00::10/127	9583	SIFY-AS-IN	Sify Limited	India(IN)	Asia	<u>Detail</u>
)	fd00::1/128	9583	SIFY-AS-IN	Sify Limited	India(IN)	Asia	<u>Detail</u>
10	fd00::8/127	9583	SIFY-AS-IN	Sify Limited	India(IN)	Asia	<u>Detail</u>

Propagation of the Bogon IP Address

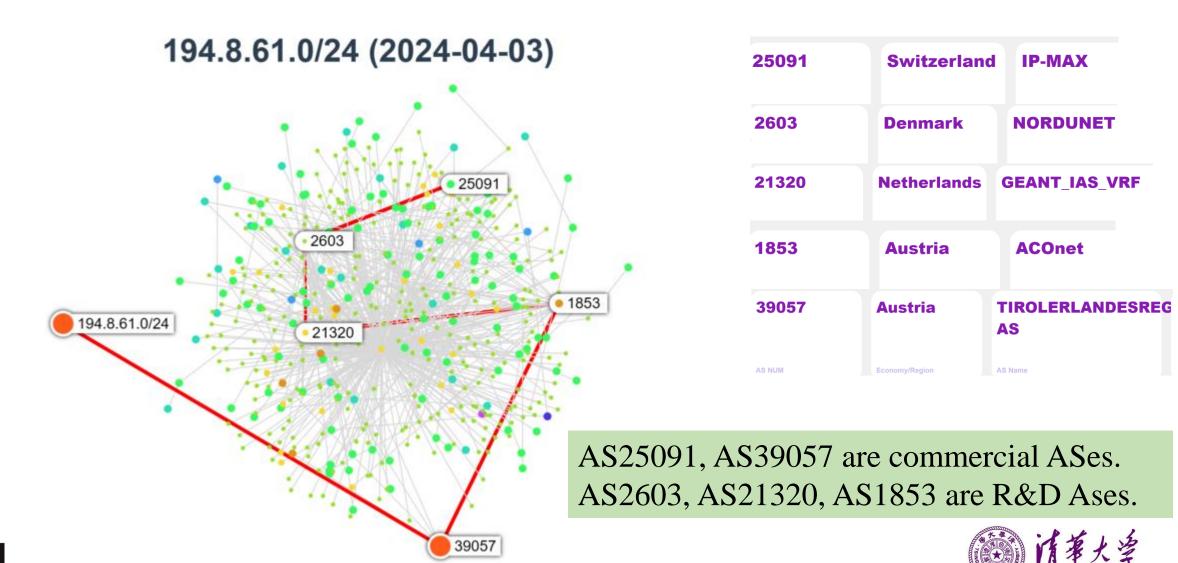


Consistency of Prefixes in RIR and ROA

- 1. Consistency between Prefix Advertisement and RIR? Match/Not Match
- 2. Consistency between Prefix Advertisement and ROA? Match/ Invalid/ Not found

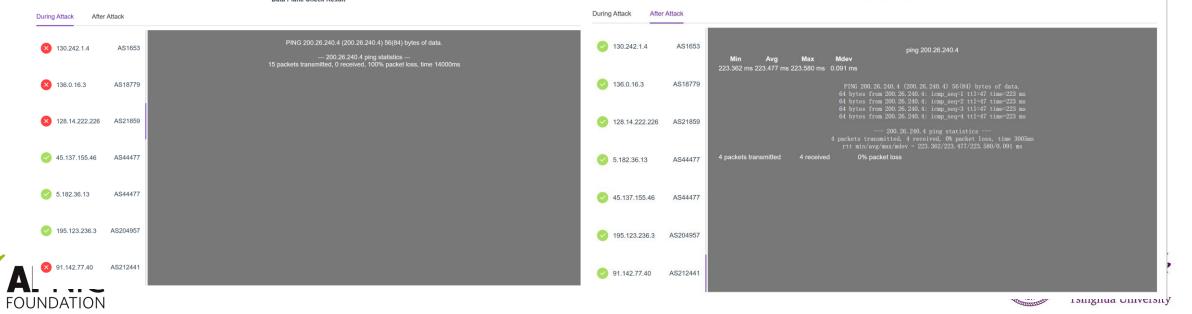

Selected Search for Prefix Q	Prefix
163.7.128 ROA: invalid	<u>163.7.129.0/24</u> ● ●
163.7.135.0/24	<u>163.7.138.0/24</u> ● ●
<u>163.7.143.0/24</u> ● ●	<u>163.7.190.0/24</u> ● ●
<u>202.27.242.0/24</u> ● ●	202.27.243.0/24
202.36.86.0/24 • •	203.217.142.0/24 • •

R&E ASes Transit Through Commercial ASes



There exist R&D path: 20130 22335 11537 20965 766, but the path with commercial AS 6939 is used.

Commercial ASes Transit Through R&E ASes


Hijack Detection through Data Plane Probing

1. Select anchor server for the prefix/subprefix

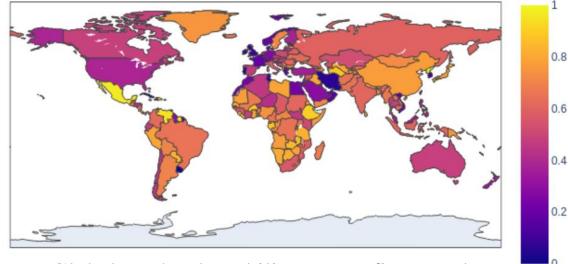
Still Under Developing

Data Plane Uneck Result

- 2. Select looking glass vantage point from affected ASes and unaffected ASes.
- 3. Check reachability during attack and after attack. Ping? Tracert?
- 4. Hijack? Traffic Engineering? Multihoming? IP address Renting?
- 5. Is it the same Server? TTL feature?

Router Jitter

- The advertisement and withdraw messages are received frequently.
- If this will harm internet performance?
- We may conduct some data plane testing in the future.

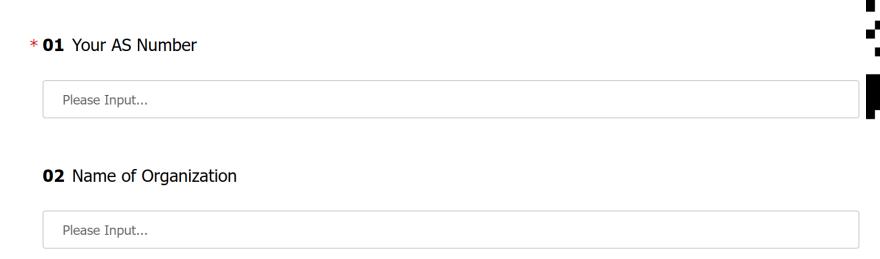

Future Work Plan

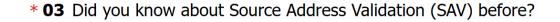
Objectives	Objectives Work Plan					
	Find obscure Looking Glass VP regularly	Dec. 2023 Done				
Develop an integrated Looking Glass platform	Develop integrated Looking Glass platform	Feb. 2024 Done				
	Develop Looking Glass API	Mar. 2024 Done				
Use Looking Glass to further check	Develop data plan detection method and decision algorithm	June 2024 Ongoing				
routing hijacking at the data plan	Integrate the algorithm to the system	Aug. 2024				
Implement path hijacking detection and	Develop path hijacking detection method	Nov. 2024				
routing leak detection methods	Develop routing leak detection method	Jan. 2025				
Continue to maintain and fix bugs in the BGPWatch platform	Continually test and get suggestions from user	Throughout the entire project duration				
Continue community development and engagement, and international collaboration	The second phase of the project (Dec.06, 2023 – June 06, 2025 (18 months)) Welcome new partners to join!	Throughout the entire project duration				

Source Address Validation

- Source address validation (SAV) is one important way to mitigate source address spoofing attacks in the data plane.
 - As defined in MANRS Action 2: Prevent traffic with spoofed source IP addresses Filtering:
 - A network operator should implement a system that enables source address validation for their own infrastructure and end users, and for any Stub Customer Networks. This should include anti-spoofing filtering to prevent packets with an incorrect source IP
 address from entering or leaving the network.

 We are conducting large-scale SAV deployment probing.




Global IPv4 vulnerability to spoofing attacks (darker colors are more secure)

• Survey Link:

https://www.survio.com/survey/d/E4V1T2S9X9W6N0X5I

() Yes

O No

* 04 Have you implemented Filtering or Source Address Validation	n (SAV) in your network?
YesNo	* 07 Where have you deployed SAV?
Unknown	At the AS boundary
* 05 Have you implemented SAV in both IPv4 and IPv6? Both in IPv4 and IPv6 Only in IPv4 Only in IPv6	At subnet boundaries within the ASBoth AS and subnet boundariesOther (please specify)
* 06 Do you filter outbound or inbound traffic? Outbound: traffic that comes from inside the network.	08 What are the reasons you chose to deploy here? e.g. limited by the network topology, easy to manage
Inbound: traffic that comes from outside the network. Only outbound filtering Only inbound filtering	Please Input
BothUnsure / Auto Configuration	

* **09** What types of SAV filtering techniques are you using?

ACL: explicitly permit or deny traffic based on source IP addresses uRPF: ensure a packet's source can be reached via the path it came from.																	
Access Control List (ACL)																	
Strict Unicast Reverse Path Forwarding (Strict uRPF)	* 11 +	low e	ffectiv	ve do v	ou b	peliev	e SA\	/ is in	mitia	ıating	ı IP sr	oofing a	nd Dos	S attack	ks in ne	etwork	s?
Loose Unicast Reverse Path Forwarding (Loose uRPF)	* 11 How effective do you believe SAV is in mitigating IP spoofing and DoS attacks in networks? 10 indicates extremely effective, while 1 indicates completely ineffective.																
Feasible Path Unicast Reverse Path Forwarding (Feasible Path uRPF)	To indicates extremely effective, write I indicates completely ineffective.																
Enhanced Feasible Path Unicast Reverse Path Forwarding (EFP-uRPF)	ineffective																
Other (please specify)	1	2	3	4	5	6	7	8	9	10							
Unsure																	
10 What challenges have you encountered in implementing SAV? e.g. multihoming, difficult to manage, false filtration Please Input	recei	ving t	the re	ducting sults fo my@er	or yo	our ne		-			eployn	nent prob	bing. W	Vould y	ou be i	interes	ted

* 04 Have you implemented Filtering or Source Address Validation (SAV) in your network?
○ Yes
O No
○ Unknown
* 05 Are you planning to implement SAV in the future?
○ Yes
○ No
○ Unsure
06 Are there any limitations or concerns that have impacted your SAV deployment?
e.g. multihoming, difficult to manage, false filtration
Please Input

Comments and Suggestions?

Contact us at:

sec@cgtf.net

